-
Main Corporate Website
-
XPS
-
Glencore Technology
-
Zipatank
-
Hypersparge
-
IsaKidd
-
IsaMill
-
IsaSmelt
-
JamesonCell
-
Albion Process
-
Viterra
-
Aquarius Energy
-
Glencore in South Africa
-
Glencore in the DRC
-
Mutanda Mining
-
Kamoto Copper Company
-
Astron Energy
-
Katanga Mining Limited
-
Glencore Australia
-
Viterra Australia
-
Bulga Coal
-
Liddell Coal
-
Mangoola
-
McArthur River Mine
-
Mt Owen Complex
-
Ravensworth operations
-
Ulan Coal
-
United Project
-
Wandoan Coal
-
West Wallsend
-
Murrin Murrin
-
Mount Isa Mines
-
Main MenuWho we are
-
Main MenuOur Technologies
-
Our TechnologiesIsaMill™
-
IsaMill™Advantages
-
How It Works -
Installations -
IsaMill™Knowledge
-
IsaMill™About
-
Contact
-
-
Our TechnologiesJameson Cell
-
Jameson CellAdvantages
-
Jameson CellHow it works
-
Installations -
Jameson CellKnowledge
-
About -
Contact
-
-
Jameson Concentrator -
Our TechnologiesAlbion Process™
-
Albion Process™Advantages
-
Albion Process™How it works
-
Albion Process™Installations
-
Albion Process™Knowledge
-
Albion Process™About
-
Contact
-
-
Our TechnologiesISASMELT™
-
Advantages -
ISASMELT™How it works
-
ISASMELT™Services
-
Installations -
ISASMELT™Knowledge
-
About -
Contact
-
-
ISASMELT™ F600 -
ISACONVERT™ -
ISACYCLE™ -
ISASMELT™ Test Hub -
Our TechnologiesISAKIDD™
-
Our TechnologiesHyperSparge™
-
ZipaTank™ -
Service, Engineering & Aftermarket
-
-
Main MenuKnowledge
-
Contact
The first stage of the Albion Process™ is fine grinding of the concentrate, which introduces a high degree of strain into the sulphide mineral lattice. The number of grain boundary fractures in the mineral increases, enabling leaching under atmospheric conditions. Fine grinding is carried out in energy efficient IsaMills™.
Fine grinding also prevents passivation of the leaching mineral by products of the leach reaction. Passivation is normally complete once the precipitated layer is 2 to 3 μm thick. Ultrafine grinding of a mineral to a particle size of 80% passing 10 to 12 μm will prevent passivation, as the leaching mineral will disintegrate prior to the precipitate layer becoming thick enough to passivate the mineral.
After the concentrate has been finely ground, the slurry is then leached in agitated vessels, and oxygen is introduced to the leach slurry to oxidise the sulphide minerals.
The agitated leaching vessels are designed by Glencore Technology and are known as the Albion Leach Reactor. The Albion Leach Reactor is agitated using dual hydrofoil impellers and oxygen is introduced to the leach slurry at supersonic velocity to improve mass transfer efficiency and ensure efficient oxidation of the sulphides. The Albion Leach Reactor is designed to operate at close to the boiling point of the slurry, and excess heat generated from the oxidation process is removed through humidification of the vessel off gases.
For more details on Albion Process™ Installations, click here.
Read more about:
-
Ultrafine Grinding and the IsaMill™ Technology
View more -
Oxidative Leaching with Albion Process™
View more